Recurrent Neural Networks for Language Modeling

CSE354 - Spring 2020
Natural Language Processing

Tasks

- Language Modeling:
how?
Generate next word, sentence \qquad
\approx capture hidden
representation of sentences.
- Recurrent Neural Network and Sequence Models

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$:probability of a next word given history P(fork | He ate the cake with the) = ?

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$:probability of a next word given history P(fork | He ate the cake with the) = ?

History
(He, at, the, cake, with, the)

What is the next word in the sequence?

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (0)
To fully capture natural language, models get very complex!

Trained Language Model What is the next word in the sequence?

Neural Networks: Graphs of Operations

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Common Activation Functions

$z=b_{(t)} W$
Logistic: $\sigma(z)=1 /\left(1+e^{-z}\right)$

Hyperbolic tangent: $\operatorname{tanb}(z)=2 \sigma(2 z)-1=\left(e^{2 z}-1\right) /\left(e^{2 z}+1\right)$
Rectified linear unit (ReLU): $\operatorname{ReLU}(z)=\max (0, z)$

Common Activation Functions

$z=b_{(t)} W$
Logistic: $\sigma(z)=1 /\left(1+e^{-z}\right)$

Hyperbolic tangent: $\operatorname{tanb}(z)=2 \sigma(2 z)-1=\left(e^{2 z}-1\right) /\left(e^{2 z}+1\right)$
Rectified linear unit $(\operatorname{ReLU}): \operatorname{ReLU}(z)=\max (0, z)$

Example: Forward Pass

(Geron, 2017)
\#define forward pass graph:
$h_{(0)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{g}\left(\mathrm{U}_{(\mathrm{i}-1)}+\mathrm{W} \mathrm{X}_{(\mathrm{i})}\right)$ \#update hidden state
$y_{(\mathrm{i})}=f\left(V \mathrm{~h}_{(\mathrm{i})}\right)$ \#update output

Example: Forward Pass

\#define forward pass graph:
$h_{(\theta)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{g}\left(\mathrm{U}_{(\mathrm{i}-1)}+\mathrm{W} \mathrm{X}_{(\mathrm{i})}\right)$ \#update hidden state
$\mathrm{y}_{(\mathrm{i})}=\mathrm{f}\left(\mathrm{V} \mathrm{h}_{(\mathrm{i})}\right)$ \#update output

Example: Forward Pass

\#define forward pass graph:
$h_{(0)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\tanh \left(\operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\operatorname{matmul}\left(\mathrm{W}, \mathrm{X}_{(\mathrm{i})}\right)\right)$ \#update hidden state
$\mathrm{y}_{(\mathrm{i})}=\operatorname{softmax}\left(\operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$?

History
(He, at, the, cake, with, the)

What is the next word in the sequence?

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$?

Historylast word (He, at, the, cake, with, the)

What is the next word in the sequence?

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$

:probability of a next word given history P(fork | He ate the cake with the) = ?

How to program neural networks:

A TensorFlow based approach.

Tensors

Need a workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

Tensors

Need a workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors

A multi-dimensional matrix

Tensors

A workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors

A multi-dimensional matrix
A 2-d tensor is just a matrix. 1-d: vector
0-d: a constant / scalar

Tensors

A workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors

A multi-dimensional matrix
A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Linguistic Ambiguity: "ds" of a Tensor =/= Dimensions of a Matrix
(i.stack.imgur.com)

Tensors

A workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors

Why?
Efficient, high-level built-in linear algebra and machine learning optimization operations (i.e. transformations).
enables complex models, like deep learning

TensorFlow

Operations on tensors are often conceptualized as graphs:

A simple example:
$\mathrm{c}=$ tensorflow.matmul(a, b)

TensorFlow

Operations on tensors are often conceptualized

 as graphs:example:
$\mathrm{d}=\mathrm{b}+\mathrm{c}$
$\mathrm{e}=\mathrm{c}+2$
$a=d * e$

(Adventures in Machine
Learning. Python TensorFlow
Tutorial, 2017)

Ingredients of a TensorFlow

tensors*
variables - persistent
mutable tensors
constants - constant
placeholders - from data

operations

an abstract computation (e.g. matrix multiply, add) executed by device kernels

Ingredients of a TensorFlow

tensors*
variables - persistent mutable tensors
constants - constant
placeholders - from data

- tf.Variable(initial_value, name)
- tf.constant(value, type, name)
- tf.placeholder(type, shape, name)

session

defines the environment in
which operations run.
(like a Spark context)
devices
the specific devices (cpus or
gpus) on which to run the session.

Operations

tensors*
variables - persistent mutable tensors
constants - constant

operations

an abstract computation (e.g. matrix multiply, add) executed by device kernels

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations	Variable, Assign, AssignAdd, ...
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

Ingredients of a TensorFlow

tensors*
variables - persistent mutable tensors
constants - constant placeholders - from data

operations

an abstract computation (e.g. matrix multiply, add) executed by device kernels

graph

Example

```
import tensorflow as tf
b = tf.constant(1.5, dtype=tf.float32, name="b")
c = tf.constant(3.0, dtype=tf.float32, name="c")
d = b+c
e = c+2
a = d*e
```


Example

import tensorflow as tf
b = tf.constant(1.5, dtype=tf.float32, name="b")
c = tf.constant(3.0, dtype=tf.float32, name="c")
$\mathrm{d}=\mathrm{b}+\mathrm{c} \# 1.5+3$
e $=$ c+2 \#3+2
$\mathrm{a}=\mathrm{d}$ * $\mathrm{\#} 4.5 * 5=22.5$

Example (working with 0-d tensors)

Example: now a 1-d tensor

```
import tensorflow as tf
b = tf.constant([1.5, 2, 1, 4.2],
    dtype=tf.float32, name="b")
c = tf.constant([3, 1, 5, 10],
    dtype=tf.float32, name="c")
d = b+c
e = c+2
a = d*e
```


Example: now a 1-d tensor

```
import tensorflow as tf
b = tf.constant([1.5, 2, 1, 4.2],
    dtype=tf.float32, name="b")
c = tf.constant([3, 1, 5, 10],
    dtype=tf.float32, name="c")
d = b+c #[4.5, 3, 6, 14.2]
e = c+2 #[5, 4, 7, 12]
a = d*e #??
```


Example: now a 2-d tensor

```
import tensorflow as tf
b = tf.constant([[...], [...]],
    dtype=tf.float32, name="b")
c = tf.constant([[...], [...]],
    dtype=tf.float32, name="c")
d = b+c
e = c+2
a = tf.matmul(d,e)
```


Example: Logistic Regression

```
X = tf.constant([[...], [...]],
    dtype=tf.float32, name="X")
y = tf.constant([...],
    dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
1.), name = "beta")
```


Example: Logistic Regression

```
X = tf.constant([[...], [...]],
    dtype=tf.float32, name="X")
y = tf.constant([...],
    dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
1.), name = "beta")
#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
```


Example: Logistic Regression

```
X = tf.constant([[...], [...]],
    dtype=tf.float32, name="X")
y = tf.constant([...],
    dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
1.), name = "beta")
#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
#Define a *cost function* to minimize:
penalizedCost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred),
reduction_indices=1)) #conceptually like |y - y_pred|
```


Optimizing Parameters -- derived from gradients

Example: Logistic Regression

```
X = tf.constant([[...], [...]],
    dtype=tf.float32, name="X")
y = tf.constant([...],
    dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
1.), name = "beta")
#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred),
reduction_indices=1))
```

```
    Example: Logistic Regression
X = tf.constant([[...], [...]], dtype=tf.float32, name="X")
y = tf.constant([...], dtype=tf.float32, name="y")
| # Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")
#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred), reduction_indices=1))
#define how to optimize and initialize:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```

```
    Example: Logistic Regression
X = tf.constant([[...], [...]], dtype=tf.float32, name="X")
y = tf.constant([...], dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")
#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred), reduction_indices=1))
#define how to optimize and initialize:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
#iterate over optimization:
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(n_epochs):
        sess.run(training_op)
    #done training, get final beta:
    best_beta = beta.eval()
```


Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$

:probability of a next word given history P(fork | He ate the cake with the) = ?

Example: RNN

\#define forward pass graph:
$h_{(\theta)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{tf} . \tanh \left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\mathrm{tf} \cdot \operatorname{matmul}\left(\mathrm{W}, \mathrm{x}_{(\mathrm{i})}\right)\right)$ \#update hidden state
$\mathrm{y}_{(\mathrm{i})}=\mathrm{tf} . \operatorname{softmax}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output
cost $=$ tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Example: RNN

Example: RNN

\#define forward pass graph:
$h_{(\theta)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{tf} . \tanh \left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\mathrm{tf} \cdot \operatorname{matmul}\left(\mathrm{W}, \mathrm{x}_{(\mathrm{i})}\right)\right)$ \#update hidden state
$\mathrm{y}_{(\mathrm{i})}=\mathrm{tf} . \operatorname{softmax}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output
cost $=$ tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation

\#define forward pass graph:
$h_{(0)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{tf} . \tanh \left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\mathrm{tf} \cdot \operatorname{matmul}\left(\mathrm{W}, \mathrm{x}_{(\mathrm{i})}\right)\right)$ \#update hidden state
$\mathrm{y}_{(\mathrm{i})}=\mathrm{tf}$. softmax $\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output

Solution:
 Unrolling

\longrightarrow Time

Solution: Unrolling

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.

Solution: Unrolling

Time

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.

Solution: Unrolling

Time

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.

Example: Forward Pass

Time
\#define forward pass graph:
$\mathrm{h}_{(\mathrm{i})}=\mathrm{tf} . \mathrm{nn} . \mathrm{relu}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\mathrm{tf} . \operatorname{matmul}\left(\mathrm{W}, \mathrm{x}_{(\mathrm{i})}\right)\right)$ \#update hidden state $\mathrm{y}_{(\mathrm{i})}=\mathrm{tf} . \operatorname{softmax}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output

Example: Forward Pass

```
hidden_size, output_size = 5, 1
```


\#define forward pass graph:
$h_{(i)}=t f . c o n t r i b . B a s i c R N N C e l l\left(n u m _u n i t s=h i d d e n _s i z e\right.$, activation $\left.=t f . n n . r e l u\right)$
$y_{(i)}=t f . \operatorname{softmax}\left(t f . m a t m u l\left(\mathrm{~V}, \mathrm{~h}_{(\mathrm{i})}\right)\right)$ \#update output

Example: Forward Pass

```
hidden_size, output_size = 5, 1
\#define forward pass graph:
\(h_{(i)}=t f . c o n t r i b . B a s i c R N N C e l l\left(n u m \_u n i t s=h i d d e n \_s i z e, ~ a c t i v a t i o n=t f . n n . r e l u\right)\)
\(\mathrm{y}_{(\mathrm{i})}=\mathrm{tf} . \operatorname{softmax}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right.\) ) \#update output
```


Example: Forward Pass

```
hidden_size, output_size = 5, 1
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
```


Time

Example: Forward Pass

```
hidden_size, output_size = 5, 1
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
```


Example: Forward Pass

```
hidden_size, output_size = 5, 1
```


\#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
output_size = output_size
\#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs)) \#softmax cost
optimizer = tf.train.AdamOptimizer(learing_rate=learning_rate)

Example: Forward Pass

```
hidden_size, output_size = 5, 1
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs)) #softmax cost
optimizer = tf.train.AdamOptimizer(learing_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```


x

Time

Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs)) #softmax cost
optimizer = tf.train.AdamOptimizer(learing_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```


Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, un
y = tf.placeholder(tf.float32, [None, uni
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWr
    tf.contrib.BasicRNNCell(num_units=hi
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*t-
optimizer = tf.train.AdamOptimizer(learil
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```

```
#execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
    init.run()
```

(Geron, 2017)

Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, un
y = tf.placeholder(tf.float32, [None, uni
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWr
    tf.contrib.BasicRNNCell(num_units=hi
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*t
optimizer = tf.train.AdamOptimizer(leari|
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```

```
#execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
init.run()
for iter in range(epochs)
    X_batch, y_batch = ...#fetch next batch
    sess.run(training_op, feed_dict=\
{X:X_batch, y:y_batch})
```

(Geron, 2017)

Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, un
y = tf.placeholder(tf.float32, [None, un 
#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWr
    tf.contrib.BasicRNNCell(num_units=hi
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*t
optimizer = tf.train.AdamOptimizer(leari|
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```

```
#execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
init.run()
for iter in range(epochs)
    X_batch, y_batch = ...#fetch next batch
    sess.run(training_op, feed_dict=\
{X:X_batch, y:y_batch})
    if iter % 100 == 0:
        c = cost.eval(feed_dict=\
        {X:X_batch, y:y_batch})
    print(iter, "\tcost: ", c)
    (Geron, 2017)
```


Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

Language Modeling

Task: Estimate $P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$

:probability of a next word given history P(fork | He ate the cake with the) = ?

Optimization:

Backward Propagation

To find the gradient for the overall graph, we use back propogation, which essentially chains together the gradients for each node (function) in the graph.

```
#define forward pass graph:
```

$h_{(0)}=0$
for i in range(1, len(x)):
$\mathrm{h}_{(\mathrm{i})}=\mathrm{tf} . \tanh \left(\mathrm{tf} \cdot \operatorname{matmul}\left(\mathrm{U}, \mathrm{h}_{(\mathrm{i}-1)}\right)+\mathrm{tf} . \operatorname{matmul}\left(\mathrm{W}, \mathrm{x}_{(\mathrm{i})}\right)\right)$ \#update hidden
state
$\mathrm{y}_{(\mathrm{i})}=\mathrm{tf} . \operatorname{softmax}\left(\mathrm{tf} . \operatorname{matmul}\left(\mathrm{V}, \mathrm{h}_{(\mathrm{i})}\right)\right)$ \#update output
cost $=$ tf.reduce_mean(-tf.reduce_sum(y*tf. $\left.\log \left(y _p r e d\right)\right)$

Optimization:

Backward Propagation

\#define forward pass graph:
$h_{(0)}=0$
for i in range(1, len(x)):
$h_{(i)}=t f \cdot \tanh (t f . m a t m u l(U$, state
$y_{(i)}=t f$. softmax (tf.matmu1 ...

```
cost = tf.reduce_mean(-tf.redu
```

To find the gradient for the overall graph, we use back propogation, which essentially chains together the gradients for each node (function) in the graph.

With many recursions, the gradients can vanish or explode (become too large or small for floating point operations).

Optimization:

Backward Propagation

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.
for the overall graph, we ion, which essentially gradients for each node bh.
is, the gradients can pecome too large or int operations).

Optimization:

Backward Propagation

How to address exploding and vanishing gradients?

Ad Hoc approaches: e.g. stop backprop iterations very early. "clip" gradients when too high.

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model

(Geron, 2017)

How to address exploding and vanishing gradients?

The LSTM Cell

How to address exploding and vanishing gradients?

How to address exploding and vanishing gradients?

How to address exploding and vanishing gradients?

The LSTM Cell

How to address exploding and vanishing gradients?

The LSTM Cell

$$
\begin{aligned}
\mathbf{i}_{(t)} & =\sigma\left(\mathbf{W}_{x i}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h i}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{i}\right) \\
\mathbf{f}_{(t)} & =\sigma\left(\mathbf{W}_{x f}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h f}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{f}\right)
\end{aligned}
$$

bias term

Common Activation Functions

$z=b_{(t)} W$
Logistic: $\sigma(z)=1 /\left(1+e^{-z}\right)$

Hyperbolic tangent: $\operatorname{tanb}(z)=2 \sigma(2 z)-1=\left(e^{2 z}-1\right) /\left(e^{2 z}+1\right)$
Rectified linear unit $(\operatorname{ReLU}): \operatorname{ReLU}(z)=\max (0, z)$

LSTM

The LSTM Cell

$$
\begin{aligned}
\mathbf{i}_{(t)} & =\sigma\left(\mathbf{W}_{x i}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h i}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{i}\right) \\
\mathbf{f}_{(t)} & =\sigma\left(\mathbf{W}_{x f}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h f}{ }^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{f}\right)
\end{aligned}
$$

LSTM

The LSTM Cell

$$
\begin{aligned}
\mathbf{i}_{(t)} & =\sigma\left(\mathbf{W}_{x i}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h i}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{i}\right) \\
\mathbf{f}_{(t)} & =\sigma\left(\mathbf{W}_{x f}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h f}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{f}\right)
\end{aligned}
$$

LSTM

The LSTM Cell

Input to LSTM

?

Input to LSTM

?

- One-hot encoding?
- Word Embedding

Input to LSTM

The GRU

Gated Recurrent Unit

The GRU

Gated Recurrent Unit

The GRU

Gated Recurrent Unit

The GRU

Gated Recurrent Unit

$$
\begin{aligned}
\mathbf{z}_{(t)} & =\sigma\left(\mathbf{W}_{x z}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h z}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{z}\right) \\
\mathbf{r}_{(t)} & =\sigma\left(\mathbf{W}_{x r}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h r}^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{r}\right) \\
\mathbf{g}_{(t)} & =\tanh \left(\mathbf{W}_{x g}^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h g}^{T} \cdot\left(\mathbf{r}_{(t)} \otimes \mathbf{h}_{(t-1)}\right)+\mathbf{b}_{g}\right) \\
\mathbf{h}_{(t)} & =\mathbf{Z}_{(t)} \otimes \mathbf{h}_{(t-1)}+\left(1-\mathbf{Z}_{(t))} \otimes \mathbf{g}_{(t)}\right.
\end{aligned}
$$

The cake, which contained candles, was eaten.

What about the gradient?

$$
\begin{aligned}
\mathbf{z}_{(t)} & =\sigma\left(\mathbf{W}_{x z}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h z}{ }^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{z}\right) \\
\mathbf{r}_{(t)} & =\sigma\left(\mathbf{W}_{x r}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h r}{ }^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{r}\right) \\
\mathbf{g}_{(t)} & =\tanh \left(\mathbf{W}_{x g}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h g}{ }^{T} \cdot\left(\mathbf{r}_{(t)} \otimes \mathbf{h}_{(t-1)}\right)+\mathbf{b}_{g}\right) \\
\mathbf{h}_{(t)} & =\mathbf{z}_{(t)} \otimes \mathbf{h}_{(t-1)}+\left(1-\mathbf{z}_{(t)}\right) \otimes \mathbf{g}_{(t)}
\end{aligned}
$$

The cake, which contained candles, was eaten.

What about the gradient?

$$
\begin{aligned}
\mathbf{z}_{(t)} & =\sigma\left(\mathbf{W}_{x z}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h z}{ }^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{z}\right) \\
\mathbf{r}_{(t)} & =\sigma\left(\mathbf{W}_{x r}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h r}{ }^{T} \cdot \mathbf{h}_{(t-1)}+\mathbf{b}_{r}\right) \\
\mathbf{g}_{(t)} & =\tanh \left(\mathbf{W}_{x g}{ }^{T} \cdot \mathbf{x}_{(t)}+\mathbf{W}_{h g}{ }^{T} \cdot\left(\mathbf{r}_{(t)} \otimes \mathbf{h}_{(t-1)}\right)+\mathbf{b}_{g}\right) \\
\mathbf{h}_{(t)} & =\mathbf{z}_{(t)} \otimes \mathbf{h}_{(t-1)}+\left(1-\mathbf{z}_{(t)}\right) \otimes \mathbf{g}_{(t)}
\end{aligned}
$$

The cake, which contained candles, was eaten.

How to train an LSTM-style RNN

```
RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))
    #where did this come from?
```

Logistic Regression Likelihood: $L\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k} \mid X, Y\right)=\prod_{i=1}^{n} p\left(x_{i}\right)^{y_{i}}\left(1-p\left(x_{i}\right)\right)^{1-y_{i}}$

Final Cost Function: $J^{(t)}=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i, j}^{(t)} \log \hat{y}_{i, j}^{(t)} \quad-$ "cross entropy error"

How to train an LSTM-style RNN

```
RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))
    #where did this come from?
```

Logistic Regression Likelihood: $L\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k} \mid X, Y\right)=\prod_{i=1}^{n} p\left(x_{i}\right)^{y_{i}}\left(1-p\left(x_{i}\right)\right)^{1-y_{i}}$
Log Likelihood:

$$
\ell(\beta)=\sum_{i=1}^{N} y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i}\right)\right)
$$

Final Cost Function: $J^{(t)}=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i, j}^{(t)} \log \hat{y}_{i, j}^{(t)}-$ "cross entropy error"

How to train an LSTM-style RNN

```
RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))
    #where did this come from?
```

Logistic Regression Likelihood: $\quad L\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k} \mid X, Y\right)=\prod_{i=1}^{n} p\left(x_{i}\right)^{y_{i}}\left(1-p\left(x_{i}\right)\right)^{1-y_{i}}$
Log Likelihood:

Log Loss:

$$
\ell(\beta)=\sum_{i=1}^{N} y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i}\right)\right)
$$

$$
\left.J(\beta)=-\frac{1}{N} \sum_{i=1}^{N} y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log (1-p)\left(x_{i}\right)\right)
$$

Final Cost Function: $J^{(t)}=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i, j}^{(t)} \log \hat{y}_{i, j}^{(t)}$-- "cross entropy error"

How to train an LSTM-style RNN

```
RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))
    #where did this come from?
```

Logistic Regression Likelihood: $L\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k} \mid X, Y\right)=\prod_{i=1}^{n} p\left(x_{i}\right)^{y_{i}}\left(1-p\left(x_{i}\right)\right)^{1-y_{i}}$
Log Likelihood:

Log Loss:

$$
\ell(\beta)=\sum_{i=1}^{N} y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i}\right)\right)
$$

$$
\left.J(\beta)=-\frac{1}{N} \sum_{i=1}^{N} y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log (1-p)\left(x_{i}\right)\right)
$$

Cross-Entropy Cost:

$$
J=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i} \log p\left(x_{i, j}\right) \quad \text { (a "multiclass" log loss) }
$$

Final Cost Function: $J^{(t)}=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i, j}^{(t)} \log \hat{y}_{i, j}^{(t)}$-- "cross entropy error"

How to train an LSTM-style RNN

```
RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))
    #where did this come from?
```

To Optimize Betas (all weights within LSTM cells):
Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration
Mini-Batch SDG:
--optimize over b samples each iteration

Final Cost Function: $J^{(t)}=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i, j}^{(t)} \log \widehat{y}_{i, j}^{(t)}-$ "cross entropy error"

RNN-Based Language Models

Take-Aways

- Simple RNNs are powerful models but they are difficult to train:
- Just two functions $\mathrm{h}_{(\mathrm{t})}$ and $\mathrm{y}_{(\mathrm{t})}$ where $\mathrm{h}_{(\mathrm{t})}$ is a combination of $\mathrm{h}_{(\mathrm{t}-1)}$ and $\mathrm{x}_{(\mathrm{t})^{\text {. }}}$.
- Exploding and vanishing gradients make training difficult to converge.
- LSTM and GRU cells solve
- Hidden states pass from one time-step to the next, allow for long-distance dependencies.
- Gates are used to keep hidden states from changing rapidly (and thus keeps gradients under control).
- To train: mini-batch stochastic gradient descent over cross-entropy cost

